Consequences of Constructive Separations

A presentation on work by Chen, Jin, Santhanam, and Williams [1]
2026-01-07

William He (linkedin) & Mustafa Motiwala (website)

https://www.linkedin.com/in/william-he-108980255/
https://motiwala.ca

Contents 2/26

1

INtrodUciono 3
l.a What is a constructive lower bound? 4
1.b When do constructive lower bounds exist?oi i 5
Many constructive separations imply breakthrough lowerbounds 6
2.2 Minimum Circuit Size Problem (MCSP) ...t i 7
2.b One-Tape Turing Machines ... 10
2.c Streaming AlGOrithimsuuue 14
2.d Query AlgoritIms . ..ot 15
Some separations are impossible to constructivize ... 16
3.a Time bounded Kolmogorov complexityooiiii 17
3.b Rye has no P-refutero 18
Some separations automatically constructivizeoouuiiiiiii 19
4.2 Any proof of P 7= NP CONStIUCHIVIZES ooutit ittt e 20
COMICIUSION . vttt ettt s 24
5.2 Thank youl ..o e 25
5.0 RefOTOIICES .o oot 26

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

1 Introduction

What is a constructive lower bound? 4/26
Let f : {0,1}* — {0,1} and A a class of algorithms.
A lower bound “f ¢ A” is a claim of the form

(VA € A)(Eo0 1), € {0, 11") (A(z,) £ f(z4))

We are interested in constructivizing lower bounds; i.e, finding algorithms that can compute the “bad
inputs” x 4 given access to the algorithm A.

P-constructive separations

Let f: {0,1}* — {0,1} and € some complexity class. We say there is a P-constructive separation of
f ¢ C if for every algorithm A computable in C, there is a “refuter” algorithm R € P which on input
1™ outputs a string in {0, 1}, such that for infinitely many n, we have A(R(1™)) # f(R(1™)).

By replacing P to other classes 2, we obtain the notion of D-constructive separations.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

When do constructive lower bounds exist? 5/26

One might expect that constructivizing lower bounds is possible only when the claimed lower bound is
“easy to prove”. It turns out that this intuition is misinformed:

1. There are (many) known separations whose constructivizations would imply breakthrough
lower bounds. We will present examples of problems for which certain lower bounds are known but
constructivizations of said lower bounds would imply results like P % NP.

2. Some known separations cannot be made constructive. For superpolynomial ¢, the set of ¢-time
incompressible strings Ry: is known to not be in P, but we show that there is no P-constructive
separation that witnesses this.

3. Many conjectured separations automatically constructivize. We show that, for example, any proof
that P # NP automatically yields a P-constructive separation. Results of this type are not original to [1]
indeed, the result that proofs of P # NP automatically constructivize is due to Gutfreund, Shaltiel, and
Ta Shma in [3].

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

2 Many constructive separations imply
breakthrough lowerbounds

Minimum Circuit Size Problem (MCSP) 7126

The Minimum Circuit Size Problem

Let s : N — N satisfy s(n) > n — 1 for all n. Then MCSP[s(n)] is the following problem:
Input: A function f : {0,1}"™ — {0, 1}, represented as a truth table with N = 2™ bits.
Output:

+ Decision version: whether f has a (fan-in two) Boolean circuit C of size at most s(n).
+ Search version: also output the circuit C' when it exists.

Definition (polylogtime-uniform-AC°[f(n)]-refuter). A polylogtime-uniform-AC°[f(n)]-refuter is a
refuter that is represented by a circuit family that is

« Polylogtime-uniform (uniformly constructible in polylogtime)

« ACO (constant depth)

« In size f(n)

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Minimum Circuit Size Problem (MCSP) (ii) 8/26

Theorem. ([1], 1.7) Let s(n) > nlos(m“" pe any time-constructive super-quasipolynomial function. If there
exists a polylogtime-uniform AC [quasipoly] refuter for MCSP[s(n)] against every polylogtime-uniform-AC°
algorithm, then P # NP.

It will be more convenient to state the bounds in terms of N = 2", so let f(IN) = s(n). As the constant-
one function is a polylogtime-uniform-AC® algorithm, it will suffice to prove the following.

Theorem. Let f(N) > 280s(N)“™ be be some poly(f(IN))-function. If there exists a polylogtime-uniform
AC[quasipoly] refuter for MCSP|[f ()] against the constant 1 function, then P # NP.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Minimum Circuit Size Problem (MCSP) (iii) 9/26

Theorem.

Let f(N) > 2'8(os(N)“™ pe some poly(f(IN))-function. If there exists a polylogtime-uniform
ACC[quasipoly] refuter for MCSP|[f(IN)] against the constant 1 function, then P # NP.

Proof. Suppose P = NP and that there is a polylogtime-uniform-AC refuter R for MCSP[f(NN)] against
the constant 1 function. The refuter R must infinitely often output a string « such that z ¢ MCSP[f(N)].

We claim that the output of R must have circuit complexity poly log(/N). Indeed, consider the function
h(N, i) which receives N, in binary and outputs the ith output bit of R on 1%V can be encoded by a
formula with finitely many quantifiers which can be verified in polylogtime (as the family is polylogtime-
uniform) so it is in PH = P (assuming P = NP) with respect to the input length (which is in O(log(N))).

1)

So, the refuter R outputs a string of circuit complexity poly log(IN) € 218(es(N)?™ < glog (log(N))“! <
f(N), showing that z € MCSP[f(NV)], a contradiction. [

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

One-Tape Turing Machines 10/26

Definition. A 3-SAT formula family {C},} . each with S(n) number of clauses, is strongly explicit if
there is an algorithm A such that A(n, - i) outputs the i-th clause of C,, in poly log(S(n)) time.

Lemma 3.5. ([2], [5]) Let M be a T'(n)-time nondeterministic RAM. There exists a strongly explicit family
of 3-SAT formulas {C,,} _ of T'- polylog(T') size, such that for every z € {0,1}", M(z) = 1 if and only
if there exists y such that C,, (z,y) = 1.

Theorem. ([1], 1.5) For every language L computable by a nondeterministic n'*°()-time RAM, if there is
a PNP-constructive separation of L from nondeterministic O(n!'!)-time one-tape Turing machines, then
ENP ¢ SIZE[2°"] for some constant § > 0.

Here, E is the class of languages decidable in deterministic 2°(™) time.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

One-Tape Turing Machines (ii) 11/26

Theorem.

For every language L computable by a nondeterministic n'*°(1)-time RAM, if there is a PNP-
constructive separation of L from nondeterministic O(n!-!)-time one-tape Turing machines, then
ENP ¢ SIZE[2°"] for some constant § > 0.

Proof. Suppose for a contradiction that EN? SIZE[2°"] for all § > 0. Consider an language L computable
by a nondeterministic n'*°(")-time RAM denoted as Mgay.-

By Lemma 3.5, we can obtain a strongly explicit family of 3-SAT formulas {C,, } with plte) .

poly log(n 1+o(1)) ni*to() size and s = n'*T°(!) variables.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

One-Tape Turing Machines (iii) 12/26
We will construct a nondeterministic O(n'!)-time one-tape Turing machine for L. Consider a
nondeterministic one-tape Turing machine Mj , for some ¢; > 0. On input z:

* M;, guesses a circuit D of size nd

» My checks that D(i) = z; for alli = 1, ..., |z (this checks if D describes)

* Mj, guesses a circuit E of size nd1, and accepts if and only if
D(1),...,D(n),E(1),...,E(s —n)

satisfies C,,.

1+0(5,)

Time Complexity: Both operations can be done in n time. The first operation can be done by

storing the n%: size circuit close to the tapehead when moving from z; to z,,.

1+0(d,)

Using a similar trick, we can perform the second operation in n time: we evaluate each clause of C,,

one at a time (this enumeration costs only poly log(n1+°(1>) < n°W) time) by using D, E to evaluate the
variables in each clause.

Hence, we can take d; to be small enough so that M , is in O(n'!) time.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

One-Tape Turing Machines (iv) 13/26

By assumption there is a PNP refuter B for L against M, 5,- We will show M solves B(1") correctly.

B(1™) has circuit complexity n’:. Indeed, we assumed that ENP SIZE 9%, Denote the function
fr(n,4) which outputs the i-th bit of the n-bit string B(1"). Since B € PN, we have fp € ENP as its input

s
can be written in 2log(n) bits. Hence, fr(n,4) has circuit complexity 227 108(7) —= n1,

Since B(1™) € L, the lexicographically first string y,, € {0,1}°" such that C, (B(1"),y,,) = 1 has circuit
complexity n®1. By Lemma 3.5, M. 5, Solves B(1") correctly, a contradiction.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Streaming Algorithms 14/26

The Set-Disjointness problem (DISJ)
The DISJ problem is the problem of determining whether two subsets of [n] are disjoint.

Input: z,y € {0,1}".

Output: (z - y) mod 2

Theorem. ([1], 1.4) Let f(n) > w(1). A polylogtime uniform-AC®-constructive separation of DISJ from
randomized streaming algorithms with O(n - (log(n))?™) time and O(log(n))f™ space implies P # NP.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Query Algorithms 15/26

The coin problem (PromiseMAJORITY)
For0 <e< %, the PromiseMAJORITY,, _ problem (also known as the coin problem) is the problem of
determining in which direction a coin is biased given a sequence of n coin flips.

Input: A string z € {0,1}"™.

Output: Letting p = 2 > z;, whetherp < 1/2—ecorp > 1/2 +¢.

Theorem. ([1], 1.6) Let € be a function of n satisfying ¢ < W, and 1/¢ is a positive integer computable
in poly(1/¢) time given n in binary. If there is a polylogtime-uniform-ACP -constructive separation of
PromiseMAJORITY,, _ from randomized query algorithms A using o(1/€?) queries and poly(1/e) time, then
P #+ NP.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

3 Some separations are impossible to
constructivize

Time bounded Kolmogorov complexity 17/ 26

Fix t : N — N and assume t(n) > n*().

Kolmogorov complexity

Define K : {0,1}* — N by K*(z) is the length of the shortest program which prints z in time ¢(|z|).

Kolmogorov incompressible strings

Let Ry: denote the set of strings = € {0, 1}* such that K*(z) > |z| — 1.

Hirahara [4] showed in 2020 that Ry: ¢ P. We show that there is no P-constructive separation of Ry: from
any class which contains the constant-zero function. In other words, there is no polynomial time refuter
which can fool even the function which always rejects.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Rk: has no P-refuter 18/26
Theorem. There is no P-refuter for Ry against the constant-zero algorithm.

Proof. Suppose there were such a refuter R. Consider the machine M which takes n in binary and outputs
R(1™). For infinitely many n, R(1™) outputs a string y,, € Rk: of length n. For these n, we have (M, n) a
program of size O(logn) which runs in time poly(n) < ¢(|y,,|) and outputs y,,, contradicting K*(y,,) >

n— 1. [|

This is an unconditionally hard problem with no constructive separations. In [1], it is shown that we can
also find problems like these in NP \ P under reasonable assumptions.

Theorem ([1], 1.9). IfNE # E (NE # RE), then there is a language in NP \ P with no P-refuter (BPP-
refuter) against the constant one function.

Here, E is the class of languages decidable in deterministic 2°(™ time, NE is the corresponding non-
deterministic class, and RE is the corresponding randomized class with one-sided error.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

4 Some separations automatically
constructivize

Any proof of P # NP constructivizes 20/ 26

In this section, we show the following:

Theorem. Suppose P # NP. Then, for any paddable NP-complete language L, there is a P-constructive
separation of L ¢ P.

Here, paddable means that any string x can be extended to any longer length in polynomial time while
preserving membership in the language. Note, for example, that SAT is paddable.

The proof requires the existence of a downwards self-reducible NP-complete language.

Downwards self-reducible
We say a language L € NP is downwards self-reducible if there is a polynomial time oracle algorithm
D such that for all z € {0, 1}™, we have L(x) = DL<m-1(z).

Every NP-complete language is downwards self-reducible.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Any proof of P %= NP constructivizes (ii) 21/26

Fix M € NP to be NP-complete and downwards self-reducible and let D be a polynomial time oracle
algorithm such that M (z) = DM==-1(z) for all strings x.

Let L be NP-complete and paddable and A a polytime algorithm. By NP-completeness of L, fix a reduction
p of M to L, so that M (x) = L(p(z)) for all z.

The polytime refuter for L against A

On input 1", we make a sequence of queries to A to construct the shortest string z* with |z*| < n
satisfying the property

A(p(x)) # D% (z), where Oy = {z’ : 2’| < |z], A(p(z")) = 1} (x)

Either A answers correctly on all queries, in which case we output p(z*), or A answers incorrectly in
which case we output the queries on which A made a mistake.

We show that for sufficiently large n, our refuter outputs at least one string y for which A(y) # L(y).

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Any proof of P = NP constructivizes (iii) 22/ 26

We first show that for sufficiently large n, there does exist a string z satisfying (*). Since M is NP-
complete, P # NP, and A € P, we cannot have A(p(z)) = M(x) for all z and so for large enough n, there
is ” with |z’| < n satisfying A(p(z’)) # M (z). If no x satisfies (x), then an induction on m < n and the
defining property of D shows A(p(x)) = M(z) for all |z| < n, contradicting A(p(z")) # M (x’).

So, there is a string satisfying (x); we let * be the shortest such string. Minimality of z* guarantees
DO9a*-1(z*) = M(z*) = L(p(z*)) so we have A(p(z*)) # L(p(z*)). Thus, if we can construct z*, then
p(x*) is the desired counterexample.

To construct z*, notice that the decision problem f(1™,1") = “Jz. |z| < m.n,z, m satisfy (x)” is in NP.
Thus, we can reduce the computation of f to an instance of L and then use A to answer that instance. The
least m such that A says YES on f(1™,1") but NO on f(1™*,1") is the length of z*.

Similarly, the problem f(y,1™,1") = “Jz.y is a prefix of z and n,x, m satisfy (x)” is in NP so by
reducing to L, we can use A to answer this question and iteratively build up y one character at a time.

If A never answers incorrectly, then we can find z* and return p(z*), otherwise we can return the instance
on which A got the wrong answer. This completes the proof. [|

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Any proof of P = NP constructivizes (iv) 23 /26

The theorem just presented is a specialization of

Theorem 5.5 (from [1]). Let € € {P,BPP,ZPP} and 2 a complexity class such that NP C D and there
is a D-complete, downwards self-reducible M. If D C €, then, for any paddable D-complete language L,
there is a C-constructive separation of L ¢ C.

The authors of [1] present various other theorems that demonstrate analogous results for D €

{PSPACE, EXP, NEXP} and more.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

5 Conclusion

Thank you! 25726

A lower bound on a decision problem is constructive when for any algorithm claiming to solve the decision
problem there is a refuter algorithm which can efficiently construct counterexamples. We have shown that
the question of when lower bounds constructivize has some counterintuitive answers and that
constructivization is a desirable property of lower bounds.

Thank you to Professor Roei Tell for an illuminating semester and thank you to our classmates for many
enlightening discussions.

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

References

(1]

(2]

26/ 26

Lijie Chen, Ce Jin, Rahul Santhanam, and Ryan Williams. 2024. Constructive Separations and Their
Consequences. TheoretiCS (February 2024). https://doi.org/10.46298/theoretics.24.3

Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas. 2005. Time-space lower
bounds for satisfiability. 7. ACM 52, 6 (November 2005), 835-865. https://doi.org/10.1145/1101821.
1101822

Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. 2007. If NP Languages are Hard on the Worst-
Case, Then it is Easy to Find Their Hard Instances. computational complexity 16, 4 (December 2007),
412-441. https://doi.org/10.1007/s00037-007-0235-8

Shuichi Hirahara. 2020. Unexpected hardness results for Kolmogorov complexity under uniform
reductions. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC
2020), 2020. Association for Computing Machinery, Chicago, IL, USA, 1038-1051. https://doi.org/10.
1145/3357713.3384251

Iannis Tourlakis. 2001. Time-Space Tradeoffs for SAT on Nonuniform Machines. Journal of Computer
and System Sciences 63, 2 (2001), 268—287. https://doi.org/https://doi.org/10.1006/jcss.2001.1767

CONSEQUENCES OF CONSTRUCTIVE SEPARATIONS A presentation on work by Chen, Jin, Santhanam, and Williams [1]

https://doi.org/10.46298/theoretics.24.3
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1007/s00037-007-0235-8
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251
https://doi.org/https://doi.org/10.1006/jcss.2001.1767

	1 Introduction
	1.a What is a constructive lower bound?
	1.b When do constructive lower bounds exist?

	2 Many constructive separations imply breakthrough lowerbounds
	2.a Minimum Circuit Size Problem (MCSP)
	2.b One-Tape Turing Machines
	2.c Streaming Algorithms
	2.d Query Algorithms

	3 Some separations are impossible to constructivize
	3.a Time bounded Kolmogorov complexity
	3.b RKt has no P-refuter

	4 Some separations automatically constructivize
	4.a Any proof of P ≠ NP constructivizes

	5 Conclusion
	5.a Thank you!
	5.b References

