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What is a constructive lower bound? 4 / 26

Let 𝑓 : {0, 1}⋆ → {0, 1} and 𝒜︀ a class of algorithms.

A lower bound “𝑓 ∉ 𝒜︀” is a claim of the form

(∀𝐴 ∈ 𝒜︀)(∃∞ 𝑛)(∃𝑥𝐴 ∈ {0, 1}𝑛)(𝐴(𝑥𝐴) ≠ 𝑓(𝑥𝐴))

We are interested in constructivizing lower bounds; i.e, finding algorithms that can compute the “bad 

inputs” 𝑥𝐴 given access to the algorithm 𝐴.

𝖯-constructive separations

Let 𝑓 : {0, 1}⋆ → {0, 1} and 𝒞︀ some complexity class. We say there is a 𝖯-constructive separation of 

𝑓 ∉ 𝒞︀ if for every algorithm 𝐴 computable in 𝒞︀, there is a “refuter” algorithm 𝑅 ∈ 𝖯 which on input 

1𝑛 outputs a string in {0, 1}𝑛, such that for infinitely many 𝑛, we have 𝐴(𝑅(1𝑛)) ≠ 𝑓(𝑅(1𝑛)).

By replacing 𝖯 to other classes 𝒟︀, we obtain the notion of 𝒟︀-constructive separations.
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When do constructive lower bounds exist? 5 / 26

One might expect that constructivizing lower bounds is possible only when the claimed lower bound is 

“easy to prove”. It turns out that this intuition is misinformed:

1. There are (many) known separations whose constructivizations would imply breakthrough 

lower bounds. We will present examples of problems for which certain lower bounds are known but 

constructivizations of said lower bounds would imply results like 𝖯 ≠ 𝖭𝖯.

2. Some known separations cannot be made constructive. For superpolynomial 𝑡, the set of 𝑡-time 

incompressible strings 𝖱𝖪𝑡  is known to not be in 𝖯, but we show that there is no 𝖯-constructive 

separation that witnesses this.

3. Many conjectured separations automatically constructivize. We show that, for example, any proof 

that 𝖯 ≠ 𝖭𝖯 automatically yields a 𝖯-constructive separation. Results of this type are not original to [1] 

indeed, the result that proofs of 𝖯 ≠ 𝖭𝖯 automatically constructivize is due to Gutfreund, Shaltiel, and 

Ta Shma in [3].
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The Minimum Circuit Size Problem

Let 𝑠 : ℕ → ℕ satisfy 𝑠(𝑛) ≥ 𝑛 − 1 for all 𝑛. Then 𝖬𝖢𝖲𝖯[𝑠(𝑛)] is the following problem:

Input: A function 𝑓 : {0, 1}𝑛 → {0, 1}, represented as a truth table with 𝑁 = 2𝑛 bits.

Output:

• Decision version: whether 𝑓  has a (fan-in two) Boolean circuit 𝐶 of size at most 𝑠(𝑛).
• Search version: also output the circuit 𝐶 when it exists.

Definition (polylogtime-uniform-𝖠𝖢0[𝑓(𝑛)]-refuter). A polylogtime-uniform-𝖠𝖢0[𝑓(𝑛)]-refuter is a 

refuter that is represented by a circuit family that is

• Polylogtime-uniform (uniformly constructible in polylogtime)

• 𝖠𝖢0 (constant depth)

• In size 𝑓(𝑛)
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Theorem. ([1], 1.7) Let 𝑠(𝑛) ≥ 𝑛log(𝑛)𝜔(1)
 be any time-constructive super-quasipolynomial function. If there 

exists a polylogtime-uniform 𝖠𝖢0[quasipoly] refuter for 𝖬𝖢𝖲𝖯[𝑠(𝑛)] against every polylogtime-uniform-𝖠𝖢0 

algorithm, then 𝖯 ≠ 𝖭𝖯.

It will be more convenient to state the bounds in terms of 𝑁 = 2𝑛, so let 𝑓(𝑁) = 𝑠(𝑛). As the constant-

one function is a polylogtime-uniform-𝖠𝖢0 algorithm, it will suffice to prove the following.

Theorem. Let 𝑓(𝑁) ≥ 2log(log(𝑁))𝜔(1)
 be be some poly(𝑓(𝑁))-function. If there exists a polylogtime-uniform 

𝖠𝖢0[quasipoly] refuter for 𝖬𝖢𝖲𝖯[𝑓(𝑁)] against the constant 1 function, then 𝖯 ≠ 𝖭𝖯.
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Theorem.

Let 𝑓(𝑁) ≥ 2log(log(𝑁))𝜔(1)
 be some poly(𝑓(𝑁))-function. If there exists a polylogtime-uniform 

𝖠𝖢0[quasipoly] refuter for 𝖬𝖢𝖲𝖯[𝑓(𝑁)] against the constant 1 function, then 𝖯 ≠ 𝖭𝖯.

Proof. Suppose 𝖯 = 𝖭𝖯 and that there is a polylogtime-uniform-𝖠𝖢0 refuter 𝑅 for 𝖬𝖢𝖲𝖯[𝑓(𝑁)] against 

the constant 1 function. The refuter 𝑅 must infinitely often output a string 𝑥 such that 𝑥 ∉ 𝖬𝖢𝖲𝖯[𝑓(𝑁)].

We claim that the output of 𝑅 must have circuit complexity poly log(𝑁). Indeed, consider the function 

ℎ(𝑁, 𝑖) which receives 𝑁, 𝑖 in binary and outputs the 𝑖th output bit of 𝑅𝑁  on 1𝑁  can be encoded by a 

formula with finitely many quantifiers which can be verified in polylogtime (as the family is polylogtime-

uniform) so it is in 𝖯𝖧 = 𝖯 (assuming 𝖯 = 𝖭𝖯) with respect to the input length (which is in 𝑂(log(𝑁))).

So, the refuter 𝑅 outputs a string 𝑥 of circuit complexity poly log(𝑁) ∈ 2log(log(𝑁))𝑂(1) ≤ 2log (log(𝑁))𝜔(1) ≤
𝑓(𝑁), showing that 𝑥 ∈ 𝖬𝖢𝖲𝖯[𝑓(𝑁)], a contradiction. ∎
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Definition. A 3-SAT formula family {𝐶𝑛}𝑛∈ℕ, each with 𝑆(𝑛) number of clauses, is strongly explicit if 

there is an algorithm 𝐴 such that 𝐴(𝑛, · 𝑖) outputs the 𝑖-th clause of 𝐶𝑛 in poly log(𝑆(𝑛)) time.

Lemma 3.5. ([2], [5]) Let 𝑀  be a 𝑇 (𝑛)-time nondeterministic RAM. There exists a strongly explicit family 

of 3-SAT formulas {𝐶𝑛}𝑛∈ℕ of 𝑇 ⋅ poly log(𝑇 ) size, such that for every 𝑥 ∈ {0, 1}𝑛, 𝑀(𝑥) = 1 if and only 

if there exists 𝑦 such that 𝐶𝑛(𝑥, 𝑦) = 1.

Theorem. ([1], 1.5) For every language 𝐿 computable by a nondeterministic 𝑛1+𝑜(1)-time 𝖱𝖠𝖬, if there is 

a 𝖯𝖭𝖯-constructive separation of 𝐿 from nondeterministic 𝑂(𝑛1.1)-time one-tape Turing machines, then 

𝖤𝖭𝖯 ⊄ 𝖲𝖨𝖹𝖤[2𝛿𝑛] for some constant 𝛿 > 0.

Here, 𝖤 is the class of languages decidable in deterministic 2𝑂(𝑛) time.
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Theorem.

For every language 𝐿 computable by a nondeterministic 𝑛1+𝑜(1)-time RAM, if there is a 𝖯𝖭𝖯-

constructive separation of 𝐿 from nondeterministic 𝑂(𝑛1.1)-time one-tape Turing machines, then 

𝐸𝖭𝖯 ⊄ 𝖲𝖨𝖹𝖤[2𝛿𝑛] for some constant 𝛿 > 0.

Proof. Suppose for a contradiction that 𝖤𝖭𝖯 ⊂ 𝖲𝖨𝖹𝖤[2𝛿𝑛] for all 𝛿 > 0. Consider an language 𝐿 computable 

by a nondeterministic 𝑛1+𝑜(1)-time 𝖱𝖠𝖬 denoted as 𝑀𝖱𝖠𝖬.

By Lemma 3.5, we can obtain a strongly explicit family of 3-SAT formulas {𝐶𝑛}{𝑛∈ℕ} with 𝑛1+𝑜(1) ⋅
poly log(𝑛1+𝑜(1)) = 𝑛1+𝑜(1) size and 𝑠 = 𝑛1+𝑜(1) variables.
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We will construct a nondeterministic 𝑂(𝑛1.1)-time one-tape Turing machine for 𝐿. Consider a 

nondeterministic one-tape Turing machine 𝑀𝛿1
, for some 𝛿1 > 0. On input 𝑥:

• 𝑀𝛿1
 guesses a circuit 𝐷 of size 𝑛𝛿1

‣ 𝑀𝛿1
 checks that 𝐷(𝑖) = 𝑥𝑖 for all 𝑖 = 1, …, |𝑥| (this checks if 𝐷 describes 𝑥)

• 𝑀𝛿1
 guesses a circuit 𝐸 of size 𝑛𝛿1 , and accepts if and only if

𝐷(1), …, 𝐷(𝑛), 𝐸(1), …, 𝐸(𝑠 − 𝑛)

satisfies 𝐶𝑛.

Time Complexity: Both operations can be done in 𝑛1+𝑂(𝛿1) time. The first operation can be done by 

storing the 𝑛𝛿1  size circuit close to the tapehead when moving from 𝑥1 to 𝑥𝑛.

Using a similar trick, we can perform the second operation in 𝑛1+𝑂(𝛿1) time: we evaluate each clause of 𝐶𝑛 

one at a time (this enumeration costs only poly log(𝑛1+𝑜(1)) ≤ 𝑛𝑜(1) time) by using 𝐷, 𝐸 to evaluate the 

variables in each clause.

Hence, we can take 𝛿1 to be small enough so that 𝑀𝛿1𝑜 is in 𝑂(𝑛1.1) time.
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By assumption there is a 𝖯𝖭𝖯 refuter 𝐵 for 𝐿 against 𝑀𝛿1
. We will show 𝑀𝛿1

 solves 𝐵(1𝑛) correctly.

𝐵(1𝑛) has circuit complexity 𝑛𝛿1 . Indeed, we assumed that 𝖤𝖭𝖯 ⊂ 𝖲𝖨𝖹𝖤[2
𝛿1
2 𝑛]. Denote the function 

𝑓𝑅(𝑛, 𝑖) which outputs the 𝑖-th bit of the 𝑛-bit string 𝐵(1𝑛). Since 𝐵 ∈ 𝖯𝖭𝖯, we have 𝑓𝑅 ∈ 𝖤𝖭𝖯 as its input 

can be written in 2 log(𝑛) bits. Hence, 𝑓𝑅(𝑛, 𝑖) has circuit complexity 22𝛿1
2 log(𝑛) = 𝑛𝛿1 .

Since 𝐵(1𝑛) ∈ 𝐿, the lexicographically first string 𝑦𝑛 ∈ {0, 1}𝑠−𝑛 such that 𝐶𝑛(𝐵(1𝑛), 𝑦𝑛) = 1 has circuit 

complexity 𝑛𝛿1 . By Lemma 3.5, 𝑀𝛿1
 solves 𝐵(1𝑛) correctly, a contradiction.
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The Set-Disjointness problem (𝖣𝖨𝖲𝖩)

The 𝖣𝖨𝖲𝖩 problem is the problem of determining whether two subsets of [𝑛] are disjoint.

Input: 𝑥, 𝑦 ∈ {0, 1}𝑛.

Output: (𝑥 ⋅ 𝑦) mod 2

Theorem. ([1], 1.4) Let 𝑓(𝑛) ≥ 𝜔(1). A polylogtime uniform-𝖠𝖢0-constructive separation of 𝖣𝖨𝖲𝖩 from 

randomized streaming algorithms with 𝑂(𝑛 ⋅ (log(𝑛))𝑓(𝑛)) time and 𝑂(log(𝑛))𝑓(𝑛) space implies 𝖯 ≠ 𝖭𝖯.
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The coin problem (𝖯𝗋𝗈𝗆𝗂𝗌𝖾𝖬𝖠𝖩𝖮𝖱𝖨𝖳𝖸)

For 0 < 𝜀 < 1
2 , the 𝖯𝗋𝗈𝗆𝗂𝗌𝖾𝖬𝖠𝖩𝖮𝖱𝖨𝖳𝖸𝑛,𝜀 problem (also known as the coin problem) is the problem of 

determining in which direction a coin is biased given a sequence of 𝑛 coin flips.

Input: A string 𝑥 ∈ {0, 1}𝑛.

Output: Letting 𝑝 = 1
𝑛 ∑ 𝑥𝑖, whether 𝑝 < 1/2 − 𝜀 or 𝑝 > 1/2 + 𝜀.

Theorem. ([1], 1.6) Let 𝜀 be a function of 𝑛 satisfying 𝜀 ≤ 1
log(𝑛)𝜔(1) , and 1/𝜀 is a positive integer computable 

in poly(1/𝜀) time given 𝑛 in binary. If there is a polylogtime-uniform-𝖠𝖢0-constructive separation of 

𝖯𝗋𝗈𝗆𝗂𝗌𝖾𝖬𝖠𝖩𝖮𝖱𝖨𝖳𝖸𝑛,𝜀 from randomized query algorithms 𝐴 using 𝑜(1/𝜀2) queries and poly(1/𝜀) time, then 

𝖯 ≠ 𝖭𝖯.
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Fix 𝑡 : ℕ → ℕ and assume 𝑡(𝑛) ≥ 𝑛𝜔(1).

Kolmogorov complexity

Define 𝖪𝑡 : {0, 1}⋆ → ℕ by 𝖪𝑡(𝑥) is the length of the shortest program which prints 𝑥 in time 𝑡(|𝑥|).

Kolmogorov incompressible strings

Let 𝖱𝖪𝑡  denote the set of strings 𝑥 ∈ {0, 1}∗ such that 𝖪𝑡(𝑥) ≥ |𝑥| − 1.

Hirahara [4] showed in 2020 that 𝖱𝖪𝑡 ∉ 𝖯. We show that there is no 𝖯-constructive separation of 𝖱𝖪𝑡  from 

any class which contains the constant-zero function. In other words, there is no polynomial time refuter 

which can fool even the function which always rejects.
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Theorem. There is no 𝖯-refuter for 𝖱𝖪𝑡  against the constant-zero algorithm.

Proof. Suppose there were such a refuter 𝑅. Consider the machine 𝑀  which takes 𝑛 in binary and outputs 

𝑅(1𝑛). For infinitely many 𝑛, 𝑅(1𝑛) outputs a string 𝑦𝑛 ∈ 𝖱𝖪𝑡  of length 𝑛. For these 𝑛, we have ⟨𝑀, 𝑛⟩ a 

program of size 𝑂(log 𝑛) which runs in time poly(𝑛) < 𝑡(|𝑦𝑛|) and outputs 𝑦𝑛, contradicting 𝖪𝑡(𝑦𝑛) ≥
𝑛 − 1. ∎

This is an unconditionally hard problem with no constructive separations. In [1], it is shown that we can 

also find problems like these in 𝖭𝖯 ∖ 𝖯 under reasonable assumptions.

Theorem ([1], 1.9). If 𝖭𝖤 ≠ 𝖤 (𝖭𝖤 ≠ 𝖱𝖤), then there is a language in 𝖭𝖯 ∖ 𝖯 with no 𝖯-refuter (𝖡𝖯𝖯-

refuter) against the constant one function.

Here, 𝖤 is the class of languages decidable in deterministic 2𝑂(𝑛) time, 𝖭𝖤 is the corresponding non-

deterministic class, and 𝖱𝖤 is the corresponding randomized class with one-sided error.
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In this section, we show the following:

Theorem. Suppose 𝖯 ≠ 𝖭𝖯. Then, for any paddable 𝖭𝖯-complete language 𝐿, there is a 𝖯-constructive 

separation of 𝐿 ∉ 𝖯.

Here, paddable means that any string 𝑥 can be extended to any longer length in polynomial time while 

preserving membership in the language. Note, for example, that 𝖲𝖠𝖳 is paddable.

The proof requires the existence of a downwards self-reducible 𝖭𝖯-complete language.

Downwards self-reducible

We say a language 𝐿 ∈ 𝖭𝖯 is downwards self-reducible if there is a polynomial time oracle algorithm 

𝐷 such that for all 𝑥 ∈ {0, 1}𝑚, we have 𝐿(𝑥) = 𝐷𝐿≤𝑚−1(𝑥).

Every 𝖭𝖯-complete language is downwards self-reducible.
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Any proof of 𝖯 ≠ 𝖭𝖯 constructivizes (ii) 21 / 26

Fix 𝑀 ∈ 𝖭𝖯 to be 𝖭𝖯-complete and downwards self-reducible and let 𝐷 be a polynomial time oracle 

algorithm such that 𝑀(𝑥) = 𝐷𝑀≤|𝑥|−1(𝑥) for all strings 𝑥.

Let 𝐿 be 𝖭𝖯-complete and paddable and 𝐴 a polytime algorithm. By 𝖭𝖯-completeness of 𝐿, fix a reduction 

𝑝 of 𝑀  to 𝐿, so that 𝑀(𝑥) = 𝐿(𝑝(𝑥)) for all 𝑥.

The polytime refuter for 𝐿 against 𝐴

On input 1𝑛, we make a sequence of queries to 𝐴 to construct the shortest string 𝑥∗ with |𝑥∗| ≤ 𝑛 

satisfying the property

𝐴(𝑝(𝑥)) ≠ 𝐷𝑂|𝑥|−1(𝑥), where 𝑂|𝑥|−1 = {𝑥′ : |𝑥′| < |𝑥|, 𝐴(𝑝(𝑥′)) = 1} (⋆)

Either 𝐴 answers correctly on all queries, in which case we output 𝑝(𝑥∗), or 𝐴 answers incorrectly in 

which case we output the queries on which 𝐴 made a mistake.

We show that for sufficiently large 𝑛, our refuter outputs at least one string 𝑦 for which 𝐴(𝑦) ≠ 𝐿(𝑦).
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We first show that for sufficiently large 𝑛, there does exist a string 𝑥 satisfying (⋆). Since 𝑀  is 𝖭𝖯-

complete, 𝖯 ≠ 𝖭𝖯, and 𝐴 ∈ 𝖯, we cannot have 𝐴(𝑝(𝑥)) = 𝑀(𝑥) for all 𝑥 and so for large enough 𝑛, there 

is 𝑥′ with |𝑥′| ≤ 𝑛 satisfying 𝐴(𝑝(𝑥′)) ≠ 𝑀(𝑥′). If no 𝑥 satisfies (⋆), then an induction on 𝑚 ≤ 𝑛 and the 

defining property of 𝐷 shows 𝐴(𝑝(𝑥)) = 𝑀(𝑥) for all |𝑥| ≤ 𝑛, contradicting 𝐴(𝑝(𝑥′)) ≠ 𝑀(𝑥′).

So, there is a string satisfying (⋆); we let 𝑥∗ be the shortest such string. Minimality of 𝑥∗ guarantees 

𝐷𝑂|𝑥∗|−1(𝑥∗) = 𝑀(𝑥∗) = 𝐿(𝑝(𝑥∗)) so we have 𝐴(𝑝(𝑥∗)) ≠ 𝐿(𝑝(𝑥∗)). Thus, if we can construct 𝑥∗, then 

𝑝(𝑥∗) is the desired counterexample.

To construct 𝑥∗, notice that the decision problem 𝑓(1𝑚, 1𝑛) = “∃𝑥. |𝑥| ≤ 𝑚.𝑛, 𝑥, 𝑚 satisfy (⋆)” is in 𝖭𝖯. 

Thus, we can reduce the computation of 𝑓  to an instance of 𝐿 and then use 𝐴 to answer that instance. The 

least 𝑚 such that 𝐴 says YES on 𝑓(1𝑚, 1𝑛) but NO on 𝑓(1𝑚−1, 1𝑛) is the length of 𝑥∗.

Similarly, the problem 𝑓(𝑦, 1𝑚, 1𝑛) = “∃𝑥.𝑦 is a prefix of 𝑥 and 𝑛, 𝑥, 𝑚 satisfy (⋆)” is in 𝖭𝖯 so by 

reducing to 𝐿, we can use 𝐴 to answer this question and iteratively build up 𝑦 one character at a time.

If 𝐴 never answers incorrectly, then we can find 𝑥∗ and return 𝑝(𝑥∗), otherwise we can return the instance 

on which 𝐴 got the wrong answer. This completes the proof. ∎
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The theorem just presented is a specialization of

Theorem 5.5 (from [1]). Let 𝒞︀ ∈ {𝖯, 𝖡𝖯𝖯, 𝖹𝖯𝖯} and 𝒟︀ a complexity class such that 𝖭𝖯 ⊆ 𝒟︀ and there 

is a 𝒟︀-complete, downwards self-reducible 𝑀 . If 𝒟︀ ⊆ 𝒞︀, then, for any paddable 𝒟︀-complete language 𝐿, 

there is a 𝒞︀-constructive separation of 𝐿 ∉ 𝒞︀.

The authors of [1] present various other theorems that demonstrate analogous results for 𝒟︀ ∈
{𝖯𝖲𝖯𝖠𝖢𝖤, 𝖤𝖷𝖯, 𝖭𝖤𝖷𝖯} and more.
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A lower bound on a decision problem is constructive when for any algorithm claiming to solve the decision 

problem there is a refuter algorithm which can efficiently construct counterexamples. We have shown that 

the question of when lower bounds constructivize has some counterintuitive answers and that 

constructivization is a desirable property of lower bounds.

Thank you to Professor Roei Tell for an illuminating semester and thank you to our classmates for many 

enlightening discussions.
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