
Consequences of Constructive Separations

A presentation on work by Chen, Jin, Santhanam, and Williams [1]
2026-01-07

William He (linkedin) & Mustafa Motiwala (website)

https://www.linkedin.com/in/william-he-108980255/
https://motiwala.ca

Contents 2 / 26

1 Introduction . ⁠3

1.a What is a constructive lower bound? . ⁠4

1.b When do constructive lower bounds exist? . ⁠5

2 Many constructive separations imply breakthrough lowerbounds . ⁠6

2.a Minimum Circuit Size Problem (MCSP) . ⁠7

2.b One-Tape Turing Machines . ⁠10

2.c Streaming Algorithms . ⁠14

2.d Query Algorithms . ⁠15

3 Some separations are impossible to constructivize . ⁠16

3.a Time bounded Kolmogorov complexity . ⁠17

3.b 𝖱𝖪𝑡 has no 𝖯-refuter . ⁠18

4 Some separations automatically constructivize . ⁠19

4.a Any proof of 𝖯 ≠ 𝖭𝖯 constructivizes . ⁠20

5 Conclusion . ⁠24

5.a Thank you! . ⁠25

5.b References . ⁠26

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

1 Introduction

What is a constructive lower bound? 4 / 26

Let 𝑓 : {0, 1}⋆ → {0, 1} and 𝒜︀ a class of algorithms.

A lower bound “𝑓 ∉ 𝒜︀” is a claim of the form

(∀𝐴 ∈ 𝒜︀)(∃∞ 𝑛)(∃𝑥𝐴 ∈ {0, 1}𝑛)(𝐴(𝑥𝐴) ≠ 𝑓(𝑥𝐴))

We are interested in constructivizing lower bounds; i.e, finding algorithms that can compute the “bad

inputs” 𝑥𝐴 given access to the algorithm 𝐴.

𝖯-constructive separations

Let 𝑓 : {0, 1}⋆ → {0, 1} and 𝒞︀ some complexity class. We say there is a 𝖯-constructive separation of

𝑓 ∉ 𝒞︀ if for every algorithm 𝐴 computable in 𝒞︀, there is a “refuter” algorithm 𝑅 ∈ 𝖯 which on input

1𝑛 outputs a string in {0, 1}𝑛, such that for infinitely many 𝑛, we have 𝐴(𝑅(1𝑛)) ≠ 𝑓(𝑅(1𝑛)).

By replacing 𝖯 to other classes 𝒟︀, we obtain the notion of 𝒟︀-constructive separations.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

When do constructive lower bounds exist? 5 / 26

One might expect that constructivizing lower bounds is possible only when the claimed lower bound is

“easy to prove”. It turns out that this intuition is misinformed:

1. There are (many) known separations whose constructivizations would imply breakthrough

lower bounds. We will present examples of problems for which certain lower bounds are known but

constructivizations of said lower bounds would imply results like 𝖯 ≠ 𝖭𝖯.

2. Some known separations cannot be made constructive. For superpolynomial 𝑡, the set of 𝑡-time

incompressible strings 𝖱𝖪𝑡 is known to not be in 𝖯, but we show that there is no 𝖯-constructive

separation that witnesses this.

3. Many conjectured separations automatically constructivize. We show that, for example, any proof

that 𝖯 ≠ 𝖭𝖯 automatically yields a 𝖯-constructive separation. Results of this type are not original to [1]

indeed, the result that proofs of 𝖯 ≠ 𝖭𝖯 automatically constructivize is due to Gutfreund, Shaltiel, and

Ta Shma in [3].

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

2 Many constructive separations imply

breakthrough lowerbounds

Minimum Circuit Size Problem (MCSP) 7 / 26

The Minimum Circuit Size Problem

Let 𝑠 : ℕ → ℕ satisfy 𝑠(𝑛) ≥ 𝑛 − 1 for all 𝑛. Then 𝖬𝖢𝖲𝖯[𝑠(𝑛)] is the following problem:

Input: A function 𝑓 : {0, 1}𝑛 → {0, 1}, represented as a truth table with 𝑁 = 2𝑛 bits.

Output:

• Decision version: whether 𝑓 has a (fan-in two) Boolean circuit 𝐶 of size at most 𝑠(𝑛).
• Search version: also output the circuit 𝐶 when it exists.

Definition (polylogtime-uniform-𝖠𝖢0[𝑓(𝑛)]-refuter). A polylogtime-uniform-𝖠𝖢0[𝑓(𝑛)]-refuter is a

refuter that is represented by a circuit family that is

• Polylogtime-uniform (uniformly constructible in polylogtime)

• 𝖠𝖢0 (constant depth)

• In size 𝑓(𝑛)

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Minimum Circuit Size Problem (MCSP) (ii) 8 / 26

Theorem. ([1], 1.7) Let 𝑠(𝑛) ≥ 𝑛log(𝑛)𝜔(1)
 be any time-constructive super-quasipolynomial function. If there

exists a polylogtime-uniform 𝖠𝖢0[quasipoly] refuter for 𝖬𝖢𝖲𝖯[𝑠(𝑛)] against every polylogtime-uniform-𝖠𝖢0

algorithm, then 𝖯 ≠ 𝖭𝖯.

It will be more convenient to state the bounds in terms of 𝑁 = 2𝑛, so let 𝑓(𝑁) = 𝑠(𝑛). As the constant-

one function is a polylogtime-uniform-𝖠𝖢0 algorithm, it will suffice to prove the following.

Theorem. Let 𝑓(𝑁) ≥ 2log(log(𝑁))𝜔(1)
 be be some poly(𝑓(𝑁))-function. If there exists a polylogtime-uniform

𝖠𝖢0[quasipoly] refuter for 𝖬𝖢𝖲𝖯[𝑓(𝑁)] against the constant 1 function, then 𝖯 ≠ 𝖭𝖯.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Minimum Circuit Size Problem (MCSP) (iii) 9 / 26

Theorem.

Let 𝑓(𝑁) ≥ 2log(log(𝑁))𝜔(1)
 be some poly(𝑓(𝑁))-function. If there exists a polylogtime-uniform

𝖠𝖢0[quasipoly] refuter for 𝖬𝖢𝖲𝖯[𝑓(𝑁)] against the constant 1 function, then 𝖯 ≠ 𝖭𝖯.

Proof. Suppose 𝖯 = 𝖭𝖯 and that there is a polylogtime-uniform-𝖠𝖢0 refuter 𝑅 for 𝖬𝖢𝖲𝖯[𝑓(𝑁)] against

the constant 1 function. The refuter 𝑅 must infinitely often output a string 𝑥 such that 𝑥 ∉ 𝖬𝖢𝖲𝖯[𝑓(𝑁)].

We claim that the output of 𝑅 must have circuit complexity poly log(𝑁). Indeed, consider the function

ℎ(𝑁, 𝑖) which receives 𝑁, 𝑖 in binary and outputs the 𝑖th output bit of 𝑅𝑁 on 1𝑁 can be encoded by a

formula with finitely many quantifiers which can be verified in polylogtime (as the family is polylogtime-

uniform) so it is in 𝖯𝖧 = 𝖯 (assuming 𝖯 = 𝖭𝖯) with respect to the input length (which is in 𝑂(log(𝑁))).

So, the refuter 𝑅 outputs a string 𝑥 of circuit complexity poly log(𝑁) ∈ 2log(log(𝑁))𝑂(1) ≤ 2log (log(𝑁))𝜔(1) ≤
𝑓(𝑁), showing that 𝑥 ∈ 𝖬𝖢𝖲𝖯[𝑓(𝑁)], a contradiction. ∎

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

One-Tape Turing Machines 10 / 26

Definition. A 3-SAT formula family {𝐶𝑛}𝑛∈ℕ, each with 𝑆(𝑛) number of clauses, is strongly explicit if

there is an algorithm 𝐴 such that 𝐴(𝑛, · 𝑖) outputs the 𝑖-th clause of 𝐶𝑛 in poly log(𝑆(𝑛)) time.

Lemma 3.5. ([2], [5]) Let 𝑀 be a 𝑇 (𝑛)-time nondeterministic RAM. There exists a strongly explicit family

of 3-SAT formulas {𝐶𝑛}𝑛∈ℕ of 𝑇 ⋅ poly log(𝑇) size, such that for every 𝑥 ∈ {0, 1}𝑛, 𝑀(𝑥) = 1 if and only

if there exists 𝑦 such that 𝐶𝑛(𝑥, 𝑦) = 1.

Theorem. ([1], 1.5) For every language 𝐿 computable by a nondeterministic 𝑛1+𝑜(1)-time 𝖱𝖠𝖬, if there is

a 𝖯𝖭𝖯-constructive separation of 𝐿 from nondeterministic 𝑂(𝑛1.1)-time one-tape Turing machines, then

𝖤𝖭𝖯 ⊄ 𝖲𝖨𝖹𝖤[2𝛿𝑛] for some constant 𝛿 > 0.

Here, 𝖤 is the class of languages decidable in deterministic 2𝑂(𝑛) time.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

One-Tape Turing Machines (ii) 11 / 26

Theorem.

For every language 𝐿 computable by a nondeterministic 𝑛1+𝑜(1)-time RAM, if there is a 𝖯𝖭𝖯-

constructive separation of 𝐿 from nondeterministic 𝑂(𝑛1.1)-time one-tape Turing machines, then

𝐸𝖭𝖯 ⊄ 𝖲𝖨𝖹𝖤[2𝛿𝑛] for some constant 𝛿 > 0.

Proof. Suppose for a contradiction that 𝖤𝖭𝖯 ⊂ 𝖲𝖨𝖹𝖤[2𝛿𝑛] for all 𝛿 > 0. Consider an language 𝐿 computable

by a nondeterministic 𝑛1+𝑜(1)-time 𝖱𝖠𝖬 denoted as 𝑀𝖱𝖠𝖬.

By Lemma 3.5, we can obtain a strongly explicit family of 3-SAT formulas {𝐶𝑛}{𝑛∈ℕ} with 𝑛1+𝑜(1) ⋅
poly log(𝑛1+𝑜(1)) = 𝑛1+𝑜(1) size and 𝑠 = 𝑛1+𝑜(1) variables.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

One-Tape Turing Machines (iii) 12 / 26

We will construct a nondeterministic 𝑂(𝑛1.1)-time one-tape Turing machine for 𝐿. Consider a

nondeterministic one-tape Turing machine 𝑀𝛿1
, for some 𝛿1 > 0. On input 𝑥:

• 𝑀𝛿1
 guesses a circuit 𝐷 of size 𝑛𝛿1

‣ 𝑀𝛿1
 checks that 𝐷(𝑖) = 𝑥𝑖 for all 𝑖 = 1, …, |𝑥| (this checks if 𝐷 describes 𝑥)

• 𝑀𝛿1
 guesses a circuit 𝐸 of size 𝑛𝛿1 , and accepts if and only if

𝐷(1), …, 𝐷(𝑛), 𝐸(1), …, 𝐸(𝑠 − 𝑛)

satisfies 𝐶𝑛.

Time Complexity: Both operations can be done in 𝑛1+𝑂(𝛿1) time. The first operation can be done by

storing the 𝑛𝛿1 size circuit close to the tapehead when moving from 𝑥1 to 𝑥𝑛.

Using a similar trick, we can perform the second operation in 𝑛1+𝑂(𝛿1) time: we evaluate each clause of 𝐶𝑛

one at a time (this enumeration costs only poly log(𝑛1+𝑜(1)) ≤ 𝑛𝑜(1) time) by using 𝐷, 𝐸 to evaluate the

variables in each clause.

Hence, we can take 𝛿1 to be small enough so that 𝑀𝛿1𝑜 is in 𝑂(𝑛1.1) time.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

One-Tape Turing Machines (iv) 13 / 26

By assumption there is a 𝖯𝖭𝖯 refuter 𝐵 for 𝐿 against 𝑀𝛿1
. We will show 𝑀𝛿1

 solves 𝐵(1𝑛) correctly.

𝐵(1𝑛) has circuit complexity 𝑛𝛿1 . Indeed, we assumed that 𝖤𝖭𝖯 ⊂ 𝖲𝖨𝖹𝖤[2
𝛿1
2 𝑛]. Denote the function

𝑓𝑅(𝑛, 𝑖) which outputs the 𝑖-th bit of the 𝑛-bit string 𝐵(1𝑛). Since 𝐵 ∈ 𝖯𝖭𝖯, we have 𝑓𝑅 ∈ 𝖤𝖭𝖯 as its input

can be written in 2 log(𝑛) bits. Hence, 𝑓𝑅(𝑛, 𝑖) has circuit complexity 22𝛿1
2 log(𝑛) = 𝑛𝛿1 .

Since 𝐵(1𝑛) ∈ 𝐿, the lexicographically first string 𝑦𝑛 ∈ {0, 1}𝑠−𝑛 such that 𝐶𝑛(𝐵(1𝑛), 𝑦𝑛) = 1 has circuit

complexity 𝑛𝛿1 . By Lemma 3.5, 𝑀𝛿1
 solves 𝐵(1𝑛) correctly, a contradiction.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Streaming Algorithms 14 / 26

The Set-Disjointness problem (𝖣𝖨𝖲𝖩)

The 𝖣𝖨𝖲𝖩 problem is the problem of determining whether two subsets of [𝑛] are disjoint.

Input: 𝑥, 𝑦 ∈ {0, 1}𝑛.

Output: (𝑥 ⋅ 𝑦) mod 2

Theorem. ([1], 1.4) Let 𝑓(𝑛) ≥ 𝜔(1). A polylogtime uniform-𝖠𝖢0-constructive separation of 𝖣𝖨𝖲𝖩 from

randomized streaming algorithms with 𝑂(𝑛 ⋅ (log(𝑛))𝑓(𝑛)) time and 𝑂(log(𝑛))𝑓(𝑛) space implies 𝖯 ≠ 𝖭𝖯.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Query Algorithms 15 / 26

The coin problem (𝖯𝗋𝗈𝗆𝗂𝗌𝖾𝖬𝖠𝖩𝖮𝖱𝖨𝖳𝖸)

For 0 < 𝜀 < 1
2 , the 𝖯𝗋𝗈𝗆𝗂𝗌𝖾𝖬𝖠𝖩𝖮𝖱𝖨𝖳𝖸𝑛,𝜀 problem (also known as the coin problem) is the problem of

determining in which direction a coin is biased given a sequence of 𝑛 coin flips.

Input: A string 𝑥 ∈ {0, 1}𝑛.

Output: Letting 𝑝 = 1
𝑛 ∑ 𝑥𝑖, whether 𝑝 < 1/2 − 𝜀 or 𝑝 > 1/2 + 𝜀.

Theorem. ([1], 1.6) Let 𝜀 be a function of 𝑛 satisfying 𝜀 ≤ 1
log(𝑛)𝜔(1) , and 1/𝜀 is a positive integer computable

in poly(1/𝜀) time given 𝑛 in binary. If there is a polylogtime-uniform-𝖠𝖢0-constructive separation of

𝖯𝗋𝗈𝗆𝗂𝗌𝖾𝖬𝖠𝖩𝖮𝖱𝖨𝖳𝖸𝑛,𝜀 from randomized query algorithms 𝐴 using 𝑜(1/𝜀2) queries and poly(1/𝜀) time, then

𝖯 ≠ 𝖭𝖯.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

3 Some separations are impossible to

constructivize

Time bounded Kolmogorov complexity 17 / 26

Fix 𝑡 : ℕ → ℕ and assume 𝑡(𝑛) ≥ 𝑛𝜔(1).

Kolmogorov complexity

Define 𝖪𝑡 : {0, 1}⋆ → ℕ by 𝖪𝑡(𝑥) is the length of the shortest program which prints 𝑥 in time 𝑡(|𝑥|).

Kolmogorov incompressible strings

Let 𝖱𝖪𝑡 denote the set of strings 𝑥 ∈ {0, 1}∗ such that 𝖪𝑡(𝑥) ≥ |𝑥| − 1.

Hirahara [4] showed in 2020 that 𝖱𝖪𝑡 ∉ 𝖯. We show that there is no 𝖯-constructive separation of 𝖱𝖪𝑡 from

any class which contains the constant-zero function. In other words, there is no polynomial time refuter

which can fool even the function which always rejects.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

𝖱𝖪𝑡 has no 𝖯-refuter 18 / 26

Theorem. There is no 𝖯-refuter for 𝖱𝖪𝑡 against the constant-zero algorithm.

Proof. Suppose there were such a refuter 𝑅. Consider the machine 𝑀 which takes 𝑛 in binary and outputs

𝑅(1𝑛). For infinitely many 𝑛, 𝑅(1𝑛) outputs a string 𝑦𝑛 ∈ 𝖱𝖪𝑡 of length 𝑛. For these 𝑛, we have ⟨𝑀, 𝑛⟩ a

program of size 𝑂(log 𝑛) which runs in time poly(𝑛) < 𝑡(|𝑦𝑛|) and outputs 𝑦𝑛, contradicting 𝖪𝑡(𝑦𝑛) ≥
𝑛 − 1. ∎

This is an unconditionally hard problem with no constructive separations. In [1], it is shown that we can

also find problems like these in 𝖭𝖯 ∖ 𝖯 under reasonable assumptions.

Theorem ([1], 1.9). If 𝖭𝖤 ≠ 𝖤 (𝖭𝖤 ≠ 𝖱𝖤), then there is a language in 𝖭𝖯 ∖ 𝖯 with no 𝖯-refuter (𝖡𝖯𝖯-

refuter) against the constant one function.

Here, 𝖤 is the class of languages decidable in deterministic 2𝑂(𝑛) time, 𝖭𝖤 is the corresponding non-

deterministic class, and 𝖱𝖤 is the corresponding randomized class with one-sided error.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

4 Some separations automatically

constructivize

Any proof of 𝖯 ≠ 𝖭𝖯 constructivizes 20 / 26

In this section, we show the following:

Theorem. Suppose 𝖯 ≠ 𝖭𝖯. Then, for any paddable 𝖭𝖯-complete language 𝐿, there is a 𝖯-constructive

separation of 𝐿 ∉ 𝖯.

Here, paddable means that any string 𝑥 can be extended to any longer length in polynomial time while

preserving membership in the language. Note, for example, that 𝖲𝖠𝖳 is paddable.

The proof requires the existence of a downwards self-reducible 𝖭𝖯-complete language.

Downwards self-reducible

We say a language 𝐿 ∈ 𝖭𝖯 is downwards self-reducible if there is a polynomial time oracle algorithm

𝐷 such that for all 𝑥 ∈ {0, 1}𝑚, we have 𝐿(𝑥) = 𝐷𝐿≤𝑚−1(𝑥).

Every 𝖭𝖯-complete language is downwards self-reducible.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Any proof of 𝖯 ≠ 𝖭𝖯 constructivizes (ii) 21 / 26

Fix 𝑀 ∈ 𝖭𝖯 to be 𝖭𝖯-complete and downwards self-reducible and let 𝐷 be a polynomial time oracle

algorithm such that 𝑀(𝑥) = 𝐷𝑀≤|𝑥|−1(𝑥) for all strings 𝑥.

Let 𝐿 be 𝖭𝖯-complete and paddable and 𝐴 a polytime algorithm. By 𝖭𝖯-completeness of 𝐿, fix a reduction

𝑝 of 𝑀 to 𝐿, so that 𝑀(𝑥) = 𝐿(𝑝(𝑥)) for all 𝑥.

The polytime refuter for 𝐿 against 𝐴

On input 1𝑛, we make a sequence of queries to 𝐴 to construct the shortest string 𝑥∗ with |𝑥∗| ≤ 𝑛

satisfying the property

𝐴(𝑝(𝑥)) ≠ 𝐷𝑂|𝑥|−1(𝑥), where 𝑂|𝑥|−1 = {𝑥′ : |𝑥′| < |𝑥|, 𝐴(𝑝(𝑥′)) = 1} (⋆)

Either 𝐴 answers correctly on all queries, in which case we output 𝑝(𝑥∗), or 𝐴 answers incorrectly in

which case we output the queries on which 𝐴 made a mistake.

We show that for sufficiently large 𝑛, our refuter outputs at least one string 𝑦 for which 𝐴(𝑦) ≠ 𝐿(𝑦).

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Any proof of 𝖯 ≠ 𝖭𝖯 constructivizes (iii) 22 / 26

We first show that for sufficiently large 𝑛, there does exist a string 𝑥 satisfying (⋆). Since 𝑀 is 𝖭𝖯-

complete, 𝖯 ≠ 𝖭𝖯, and 𝐴 ∈ 𝖯, we cannot have 𝐴(𝑝(𝑥)) = 𝑀(𝑥) for all 𝑥 and so for large enough 𝑛, there

is 𝑥′ with |𝑥′| ≤ 𝑛 satisfying 𝐴(𝑝(𝑥′)) ≠ 𝑀(𝑥′). If no 𝑥 satisfies (⋆), then an induction on 𝑚 ≤ 𝑛 and the

defining property of 𝐷 shows 𝐴(𝑝(𝑥)) = 𝑀(𝑥) for all |𝑥| ≤ 𝑛, contradicting 𝐴(𝑝(𝑥′)) ≠ 𝑀(𝑥′).

So, there is a string satisfying (⋆); we let 𝑥∗ be the shortest such string. Minimality of 𝑥∗ guarantees

𝐷𝑂|𝑥∗|−1(𝑥∗) = 𝑀(𝑥∗) = 𝐿(𝑝(𝑥∗)) so we have 𝐴(𝑝(𝑥∗)) ≠ 𝐿(𝑝(𝑥∗)). Thus, if we can construct 𝑥∗, then

𝑝(𝑥∗) is the desired counterexample.

To construct 𝑥∗, notice that the decision problem 𝑓(1𝑚, 1𝑛) = “∃𝑥. |𝑥| ≤ 𝑚.𝑛, 𝑥, 𝑚 satisfy (⋆)” is in 𝖭𝖯.

Thus, we can reduce the computation of 𝑓 to an instance of 𝐿 and then use 𝐴 to answer that instance. The

least 𝑚 such that 𝐴 says YES on 𝑓(1𝑚, 1𝑛) but NO on 𝑓(1𝑚−1, 1𝑛) is the length of 𝑥∗.

Similarly, the problem 𝑓(𝑦, 1𝑚, 1𝑛) = “∃𝑥.𝑦 is a prefix of 𝑥 and 𝑛, 𝑥, 𝑚 satisfy (⋆)” is in 𝖭𝖯 so by

reducing to 𝐿, we can use 𝐴 to answer this question and iteratively build up 𝑦 one character at a time.

If 𝐴 never answers incorrectly, then we can find 𝑥∗ and return 𝑝(𝑥∗), otherwise we can return the instance

on which 𝐴 got the wrong answer. This completes the proof. ∎

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

Any proof of 𝖯 ≠ 𝖭𝖯 constructivizes (iv) 23 / 26

The theorem just presented is a specialization of

Theorem 5.5 (from [1]). Let 𝒞︀ ∈ {𝖯, 𝖡𝖯𝖯, 𝖹𝖯𝖯} and 𝒟︀ a complexity class such that 𝖭𝖯 ⊆ 𝒟︀ and there

is a 𝒟︀-complete, downwards self-reducible 𝑀 . If 𝒟︀ ⊆ 𝒞︀, then, for any paddable 𝒟︀-complete language 𝐿,

there is a 𝒞︀-constructive separation of 𝐿 ∉ 𝒞︀.

The authors of [1] present various other theorems that demonstrate analogous results for 𝒟︀ ∈
{𝖯𝖲𝖯𝖠𝖢𝖤, 𝖤𝖷𝖯, 𝖭𝖤𝖷𝖯} and more.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

5 Conclusion

Thank you! 25 / 26

A lower bound on a decision problem is constructive when for any algorithm claiming to solve the decision

problem there is a refuter algorithm which can efficiently construct counterexamples. We have shown that

the question of when lower bounds constructivize has some counterintuitive answers and that

constructivization is a desirable property of lower bounds.

Thank you to Professor Roei Tell for an illuminating semester and thank you to our classmates for many

enlightening discussions.

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

References 26 / 26

[1] Lijie Chen, Ce Jin, Rahul Santhanam, and Ryan Williams. 2024. Constructive Separations and Their

Consequences. TheoretiCS (February 2024). https://doi.org/10.46298/theoretics.24.3

[2] Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas. 2005. Time-space lower

bounds for satisfiability. J. ACM 52, 6 (November 2005), 835–865. https://doi.org/10.1145/1101821.

1101822

[3] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. 2007. If NP Languages are Hard on the Worst-

Case, Then it is Easy to Find Their Hard Instances. computational complexity 16, 4 (December 2007),

412–441. https://doi.org/10.1007/s00037-007-0235-8

[4] Shuichi Hirahara. 2020. Unexpected hardness results for Kolmogorov complexity under uniform

reductions. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC

2020), 2020. Association for Computing Machinery, Chicago, IL, USA, 1038–1051. https://doi.org/10.

1145/3357713.3384251

[5] Iannis Tourlakis. 2001. Time–Space Tradeoffs for SAT on Nonuniform Machines. Journal of Computer

and System Sciences 63, 2 (2001), 268–287. https://doi.org/https://doi.org/10.1006/jcss.2001.1767

Consequences of Constructive Separations A presentation on work by Chen, Jin, Santhanam, and Williams [1]

https://doi.org/10.46298/theoretics.24.3
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1007/s00037-007-0235-8
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251
https://doi.org/https://doi.org/10.1006/jcss.2001.1767

	1 Introduction
	1.a What is a constructive lower bound?
	1.b When do constructive lower bounds exist?

	2 Many constructive separations imply breakthrough lowerbounds
	2.a Minimum Circuit Size Problem (MCSP)
	2.b One-Tape Turing Machines
	2.c Streaming Algorithms
	2.d Query Algorithms

	3 Some separations are impossible to constructivize
	3.a Time bounded Kolmogorov complexity
	3.b RKt has no P-refuter

	4 Some separations automatically constructivize
	4.a Any proof of P ≠ NP constructivizes

	5 Conclusion
	5.a Thank you!
	5.b References

