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Abstract

We show how to metrize pointwise convergence on the unit ball of the dual of a separable
normed vector space. Under our metric, the unit ball of the dual becomes compact.

§1 Introduction

Recall the operator norm on bounded linear maps, which computes the maximal norm attained by
a linear map on the unit ball of its domain. It is well known that the operator norm induces the
topology of uniform convergence. Another natural notion of convergence of functions is pointwise
convergence, wherein a sequence of functions f,, — f if and only if f,(z) — f(x) for all z. One may
well ask whether the topology of pointwise convergence is metrizable, that is, does there exist a metric
d on a set of functions satisfying the property that f, — f pointwise if and only if f,, converges to f
under d.

Under certain conditions, we are able to answer this question in the affirmative. Specifically, we show
if X is a separable normed vector space, then pointwise convergence on the closed unit ball of X*
under the operator norm is metrizable, and moreover that it is compact under the induced topology.
Here, X* denotes the continuous dual space of X, that is, the space of bounded, linear functions from
X = R.

We also discuss necessary and sufficient conditions for metrizing pointwise convergence on all of X*.

§2 Preliminary Results

We establish a few technical lemmas that will be helpful for the main result.

Lemma 2.1. For (X,d) a metric space, the function

. 5 d(z,
d:XxX >R d(x,y)zlJr(d(g)y)

is a topologically equivalent metric to d.

Proof. Let us first verify that d is indeed a metric. For any z,y € X, notice that

7 d(xv y)

d(z,y) =0 < d(x,y)—i—lzo — d(z,y)=0 < z =y

Furthermore, since d(x,y) > 0, it follows that d(x,y)+1 > 1, so clearly (i(x, y) > 0. Symmetry follows
immediately from the symmetry of d. Note that for any z,y € X, we have that 0 < d(z,y) < d(z,y)+1,
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which shows that d is bounded by 1. To assist in proving the triangle inequality, we start by defining

the function f:[0,R) — [0,R) by f(t) = H% Notice that f is differentiable with derivative



(t+1)—t(1) 1
(t+1)2  (t+1)2

>0

f1t) =

so f'(t) > 0 for all t € [0,00). We know this implies that f is an increasing function. Now fix
z,y,z € X. Since f is increasing, we have that

d(z,2) < d(z,y) +d(y, 2) = [fd(z,2)) < fld(z,y) + d(y, 2))
Using the triangle inequality d satisfies, it follows that
de2) _ day) +d(.2)
d(z,z) +1 7 d(z,y) +d(y, z) + 1
_ d(z,y) d(y, z)
d(z,y) +d(y,2) +1  d(z,y) +d(y,z) + 1
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Note that the last inequality holds as we are dividing both terms by a smaller number. This shows
that d is indeed a metric. We now show that d and d are topologically equivalent. Given z € X and
r >0, we'll let B(z,r) = {y € X : d(z,y) <r}. Fixz € X, r > 0, and consider B(z,r). Since d is
bounded by 1, we may assume that r < 1, as otherwise the open ball would equal all of X. Notice

that
7 d(l’7y)
d(z,y) <r < Ay +1 <r <= d(z,y) <rd(zr,y)+r
— (1-—r)d(z,y) <r < d(z,y) < 1ir

which shows that B(z,r) = B(z, =), SO B(x,r) is open in (X,d). Similarly, for any 2 € X and
r > 0, we have that

d
LN (z,y) T

d(z,y) <
(2,y) r+1 dlx,y)+1 r+1

— rd(z,y) +d(z,y) < rd(z,y) +r < d(z,y) <r
showing B(z,r) = B(z, +57), 80 B(z,7) is open in (X, d). Since (X, d) and (X, d) have the same open
balls, they must have the same open sets, so d and d are topologically equivalent.

O

The following lemma shows how to metrize pointwise convergence of sequences and will do a lot of
the heavy lifting for our main result.

Lemma 2.2. Let (X,,,dy) be a sequence of metric spaces. Take X = [[,c Xi and define p: X x X —

R by
- 1 — 1 di(2k, yi)
2 (T, Yi) BT
&\ Z o kz:: M1+ di(zr, yr)
Then, p is a well-defined metric on X. Moreover, the topology induced by p is that of pointwise

convergence of sequences. That is, a sequence (T,,) in X converges to y with respect to p if and only
if the sequences (ﬁ’k)zozl — 7, for all k € IN.



Proof. Well-definedness of p is a quick consequence of the Basic Comparison Test: for each k € IN, we
have

1 . 1
0< ?dk(xmyk) < 27]6
so — since > 7, 27 converges — so does p((zx), (yx)). Thus, p is well-defined.

Now, we show that p is a metric. Positive-definiteness and symmetry are immediate consequences of
positive-definiteness and symmetry of the metrics on X,,. To see that the triangle inequality holds,
note that for (xy), (yk), (zx) € X, we have

p((wn), (20)) = 3 o, 20)

1/, )
< Z ok (dk(xfm Yr) + dic (Y, Zk)) by Lemma 2.1

Thus, p is a metric on X.

Now, let () be a sequence in X and 7 € X. We show that convergence of (Z,;) under p is equivalent
to pointwise convergence of the component sequences.

= Suppose (T,,) converge to § under p.
Fix £k € N. By Lemma 2.1, it suffices to show convergence of the component sequence (ﬁk)
under the bounded metric d, to show convergence in dj,.
So, let € > 0 be given, and choose N € IN so that if n > N, then p(Z,,7) < /2.
Let n > N. Then, since p(Ty,7) is a sum of non-negative terms bounded by £/2F, each term in
the sum has the same bound. In particular, we have
L k
27dk (T 1> Ur) <€/2
which gives dy, (T 4, 7x) < €.
Thus, convergence under p implies pointwise convergence of each component sequence.

—_ o0
<= Now, suppose each component sequence (xnk)

n—, converges to ¥, under dy. By Lemma 2.1,

we can assume convergence of the component sequences under d.

Let € > 0 be given. Choose N € IN so that

and set C = Y1 27

By convergence of the component sequences, we can choose for each 1 < i < N, some M; € N

so that if n > Mi, then
c{ (x ) < =
k n,]myk 20



Finally, we take K = max;<,<ny M;. So, if n > K, then

N 1 . 0o 1 .
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Thus, pointwise convergence of (Z,,) to 7 implies convergence under p.

So, we can metrize pointwise convergence on sequence spaces. O

Lemma 2.3. Let (X,,,dy) be a sequence of compact metric spaces. Take X = [],cy Xi and equip X
with the metric p constructed in Lemma 2.2. Then, (X, p) is compact.

Proof. We show sequential compactness of X.
Let (Tx) be a sequence in X. We recursively define a sequence (t;) of subsequences of (T) as follows:

e By compactness of X, the sequence (zx,1)72, has some convergent subsequence (xk].,l) con-
verging to some p; € X;. We take t = (m) That is, t; is a subsequence of (Tx) such that the
sequence obtained by taking the first coordinate of each sequence in ¢; converges to p;.

e Now, given a subsequence ¢, of (73), the sequence (f, ka);O:l obtained by taking the (n+1)th
coordinate of each sequence in t,, is a sequence in X, ;. By compactness, this sequence has
a subequence converging to some p,4+1 € Xp41. S0, we take t;:l to be the subsequence of ¢,
corresponding to this subsequence. In other words, the sequence obtained by taking the (n+1)th
coordinate of each sequence in t;:l will converge to pp41.

It is easy to see by induction the following:

1. For each n € IN, the sequence of the first n coordinates of each sequence in ¢,, converges to some
(15> Pn) € [Ty X

2. These limits are the same for all tn. In other words, for n > m, the sequence of the first m
coordinates of each sequence in t,, converges to the same (p1,...,pm) € [[1—, X as the sequence
of first m coordinates of each sequence in t,,.



Finally, we define the sequence 7 = (p,,) as follows: given n € N, write t,, = (5) and define
k—o0

which exists by our observations above.
We claim that P is a cluster point for (Ty).

Let € > 0 be given. Choose N € IN so that

Write ty = (55). Then, (55) converge pointwise in the first N coordinates to (py,...,pxy). By Lemma
2.2, p respects this pointwise convergence, so we can choose K € IN so that if £ > K, then

So, if k > K, we have

Jj=1

N 1 . oo 1 .
2227(1(8193,}9])4- Z 2]d(8kj7pJ)

Jj=1 j=N+1

N > 1
SZQ*]d(Sk’j,pJ)‘F Z 27

Jj=1 j=N+1
<E.€
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€

Thus, for any € > 0, there are infinitely many elements in (Zz) within a distance of € from p, so D is
a cluster point.

So, any sequence in X has a cluster point, and hence X is compact. O

Lemma 2.4. Let (X, | - ||) be a separable normed vector space. Then the unit ball is separable with
respect to the subspace topology.

Proof. We let B(0,1) denote the closed unit ball of X. Let A be a countable dense subset of X, and
consider the set A’ = AN B(0,1). Countability of A’ C A is a clear consequence of countability of A.

We aim to show A’ is dense in E(O, 1). Let U be a non-empty open set in B(0,1). Then, by definition
of the subspace topology, U = B(0,1) N U’ for some open U’ C X. Since U # @, we have some x € U;
in particular, we have x € B(0,1) and £ > 0 such that B(x,e) C U’.



Assume without loss of generality that ¢ < 1. Set r = 1 — 5 and choose by density of A some
a € AN B(rz,1 —r). Then, we have

lall <l —rz| + |lrz]|
<(l-=-r)+r
=1
so, in fact, a € A’. On the other hand,

la —z| < lla —rz| + |rz — z|
<(I=r)+|r—1]
=2(1-r)
=¢
so that a € B(z,¢) C U'. In particular, a € B(0,1) and a € U’, so a € U.

Thus, for every non-empty open subset U C B(0,1), the intersection B(0,1) N A’ is non-empty, so A’
is dense in B(0, 1) with respect to the subspace topology.

O

§3 Proof of main result

Let (X, || - ||) be a separable normed vector space. Denote by B the unit ball of X and by B* the unit
ball of X* under the operator norm.

S(¢) = (¢(a1), ¢(a2), .. .)
Since ||@|lop < 1 and ay € B, we have |¢(ay)| < 1 for all kK € IN, so S is indeed well-defined.

Also, note that S is injective, for if S(¢) = S(¢), then ¢, are uniformly continuous functions which
agree on a dense subset of B and hence must agree on all of B. Since ¢, are linear, their equality
on a neighborhood of 0 implies equality everywhere.

Recall that by Lemma 2.2, pointwise convergence in [—1,1]N, where [~1,1] is considered with the
standard euclidean metric, is metrizable with metric p. We take our metric d : B* x B* — R to be

(o, ¢) = p(S(#),S(¥))

Note that d inherits non-negativity, symmetry, and the triangle inequality from p. Moreover, by
injectivity of S, we have

d(¢, 1) =0 < S(¢) =8S(¢) <= ¢ =79
so d is positive-definite. Thus, d is indeed a metric.
We claim that d metrizes pointwise convergence; that is, ¢, —4 ¢ if and only if ¢,(x) — ¢(x) for
all z € X.

Proof. Let (¢,) be a sequence in B*.



= Suppose ¢, converge to ¢ under d.

Since p metrizes pointwise convergence of sequences, this means S(¢,) converges pointwise to
S(¢). In other words, ¢, (ax) — ¢(ax) for all k, so ¢,, converge pointwise to ¢ on a.

Now, we show ¢,, converge pointwise to ¢ on all of X.

Let € X. If z = 0, then certainly ¢,,(0) — ¢(0), by linearity. Otherwise, set ' = z/||z||
so that 2’ € B and write 2’ = limj_,oc ;. Let € > 0 be given. Since ¢(ax;) — ¢(z’) and
oy, — ', choose j € IN such that both Hakj — /|| < /3 and |¢(an,) — #(2')| < /3. By
pointwise convergence on a, choose N € IN so that if n > N, then | ¢, (ax,) — ¢(ou,)| < /3.

Let n > N. Then,

|6n(2") — p(a")] < |¢"(x/) — n (akj)| + ’¢7l (O‘ka‘) - ¢(O‘k1)| + M(O‘kj) - (;S(a:’)|

<[on(a) = dulon)| + 5 + 3

= [on (e’ —aw)|+ 5+ 3
9 9
S ||¢)n||op||xl - akj” + g + g
JELELE
3 3 3
=&

So, ¢n (') = ¢(2’) and hence, by linearity,

1 u(2) = lim [z]én(@) = [2]6(z) = b(z)

Thus, convergence under p implies pointwise convergence.
<= Suppose ¢,, converge pointwise to ¢.

Then, in particular, ¢,(ar) — ¢(ax) for all k € IN, so the sequences S(¢,) converge pointwise
to S(¢). But, p metrizes pointwise convergence, so

n—oo

and hence ¢,, converge to ¢ under d.

Next, we’ll show that B* is in fact compact under d, but first we’ll need the following result.

Claim: (B*,d) is complete.

Proof. Let (¢n) be a Cauchy sequence in (B*,d).
We claim that lim, o ¢n(2) exists for all z € X.

Let z € X. If x = 0, the claim is clearly true, so assume x # 0. Set 2’ = x/||z||. We will show that
(¢n(x')) converges. For this, it suffices to show the sequence is Cauchy, as R is complete.

So, let € > 0 be given. Since z’ € B, we can write 2’ = lim; ;o ag,. In particular, we can choose
jo € IN so that Hakj — Qg H < g/3 for all j > jo.



Since (¢n) is Cauchy under d, so is ((b”(akjo))' Thus, we can choose N € IN so that if n,m > N, then
|bn (k) — D, )| < /3.

Let n,m > N. Then,
|pn (") = Pm(z")| = n(Jlgglo Oékj> ¢m( lim oy, )‘
= jlim ’¢n (ak].) — dm (O‘kj){
< lim {[én(an;) = dn (e, )]+ |0n () = Em (e, )] + |om (@) = dm ;)]

= hH1H¢n(ak gy )|+ n (ks ) — b (g, )|+ [dm (o, — ;)]

< hnl[H¢nHopHak — e, ||+ [dnlany,) = dm (g, )|+ ldmllop ||k, =, |l]
< lim S 4o 45

=03 7373

<e¢

Thus, (¢, (2')) converges, and hence
. _ : /

lim_ (o) = [Jo]| lim ¢,()
exists.
So, we define ¢ : X — R by

¢(z) = lim ¢, (z)

It is clear that ¢ is linear and that ¢ € B*. Moreover, by construction, ¢, converge pointwise to ¢
and so ¢, —>q @.

Thus, (B*,d) is complete. O
Finally, we can show compactness of (B*,d).

Proof. Since [—1,1] is compact, we have by Lemma 2.3 that ([-1,1],p) is compact. Then, by
definition of d, we have for all ¢,v € B* that

(¢, ) = p(S(¢),S(¢))
so S: B* — [-1,1]N is an isometry.

Since (B*, d) is complete and completeness is an isometry invariant, it follows that S(B*) is complete.
Moreover, complete subspaces are necessarily closed, so S(B*) must be a closed subspace of [—1,1]N.
Finally, by Proposition 1.16.15 (Gauvreau), S(B*) is compact as it is a closed subspace of a compact
space. Since isometries are injective, S™! : S(B*) — B* exists and is also an isometry (Gauvreau
1.17.5). Importantly, S~ is continuous, and so — by the Extreme Value Theorem — S~(S(B*)) = B*
is compact.

O



§4 Extending the metric

We have shown that pointwise convergence on B* is metrizable. By a similar argument, pointwise
convergence on any bounded subset of X* can be metrized. A natural question is whether this
boundedness assumption is required. That is, is it possible to metrize pointwise convergence on all of
X*?

Interestingly, when X has countable dimension (for example, when X is the space of real polynomials),
the answer is yes, with a somewhat different metric. We have the following theorem:

Theorem 4.1. Let X be a normed vector space. If X has countable dimension, then pointwise
convergence can be metrized on all of X*.

Proof. Suppose X has countable dimension. If X has countably infinite dimension, let § = {8 : k € IN}
be a basis for X. Otherwise X is finite dimensional, say dim(X) = n, so we let § = {8 : k € IN}
where {f1,...,8,} forms a basis for X, and 3; = 0 for k& > n.

Define S : X* — RY by
S(d)) = (¢(51)7 QS(ﬁQ)a s )
By Lemma 2.2, pointwise convergence in RN is metrizable with metric p, so we define d : X*x X* — R
by
d(¢,) = p(S(¢),S(¥))

Note that S is injective, since if S(¢) = S() then ¢, agree on all basis vectors and hence on every
element of X. Thus, d is a metric.

Let (¢n) be a sequence in X*. By a similar argument as in §3, if ¢,, converge pointwise to ¢, then
¢n —d ¢

Now, suppose ¢,, converge to ¢ under d. Again, by a similar argument as in §3, ¢,, converge pointwise
to ¢ on every (. This allows us to extend pointwise convergence to all of X as follows.

Let x € X and write = ¢18k, + -+ + ¢a Bk, -

Let € > 0 be given. Set C' = 1 + maxi<;<;|c;|. By pointwise convergence on (3, choose for each
1 <4<y, some M; € N so that if n > M;, then |¢,(Bk,) — #(Bk;) (Cj). Let n > N. Then,

|n(z) — o(2)| =

MQK

¢i(9n(Br,) = 8(B;))

1

< lel @ (Bs,) - 0(54,)

=1

<.
Il

[

<> Clon(Br,;) — ¢(Bs,)|

=1

<

€
< C—
i=1 Cj

™

Thus, d metrizes pointwise convergence on X*. O



We believe the converse of Theorem 4.1 is also true, giving the following conjecture

Conjecture 4.2. Let X be a normed vector space. Then, pointwise convergence of sequences in X*
can be metrized if and only if X has countable dimension.

While a little progress has been made, the conjecture remains unsolved. Note that it is very similar to
a well-established result from topology that the weak-+ topology is not metrizable. In this topology,
we generalize sequences to objects known as nets and force any such net of functions to converge
pointwise. While it is true that any arbitrary topology is completely characterized by which nets
converge and to what, it is not true that a topology is characterized by its convergent sequences. In
particular, it is conceivable that a metric which metrizes the pointwise convergence of sequences of
functionals might exist while still failing to metrize the weak-* topology. For more information on
the weak-* topology and related results, refer to [1] and [2].

§5 Future Directions

In this paper, we focused on pointwise convergence of linear functionals. However, the notion of
pointwise convergence is one which makes sense for functions between any metric spaces, so the
question of metrizing pointwise convergence in this more general setting is still meaningful and yet
unanswered.

The proofs presented here do not immediately generalize as we make explicit use of the vector space
structure of X and the completeness of R. However, we believe that the important properties granted
by this structure can be phrased in the language of metric spaces.

Recall that a function f between metric spaces X and Y is said to be Lipschitz if there exists some
constant M > 0 such that d(f(a), f(b)) < Md(a,b) for all a,b € X.

We say a family F of functions between X and Y is uniformly Lipschitz if there exists a constant
M > 0 such that d(f(a), f(b)) < Md(a,b) for all f € F and a,b € X.

Note, then, that the unit ball of the dual is uniformly Lipschitz with M = 1. With this language, we
have the following conjecture:

Conjecture 5.1. Let X,Y be metric spaces with X separable. Let F be a uniformly Lipschitz family
of functions between X and Y. Then, pointwise convergence in F is metrizable. Moreover, if Y is
compact, then F is compact under said metric.
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